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ABSTRACT

We give a short and conceptual proof of Webb’s conjecture. Our methods

are general enough to prove an analogue of the conjecture for saturated

fusion systems.

1. Introduction

Let G be a finite group. The set S0

p(G) of all the non-trivial p-subgroups of G

is partially ordered by inclusion. The partial order is preserved by conjugation

in G and there results a geometric simplicial complex |S0

p(G)| on which G acts.

This complex was first studied by Brown [4],[3], see also [8].

Webb proved that the orbit space |S0

p(G)|/G is Fp-acyclic and conjectured

that it is contractible. This fact was proven by Symonds in [11]. His proof hinges

on Whitehead’s theorem which is applied to a certain homotopy equivalent

subspace of |Sp(G)| which is shown to be simply connected and acyclic. In this

note we will obtain a conceptual proof of Symonds’ theorem.

1.1. Theorem (Symonds [11]): Let G be a finite group and let C be a non-

empty collection of p-subgroups which is closed under taking super-p-groups.

Then |C|/G is contractible.
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Proof. This is immediate from Theorem 3.2 and the remarks in the beginning

of §3, taking into account that geometric realisation commutes with formation

of orbit spaces.

A Sylow p-subgroup P of a finite group G gives rise to a small category

FP (G) whose objects are the p-subgroups of G which are contained in P and

whose morphisms are the homomorphisms between them which are restrictions

of the inner automorphisms of G. The orbit space |C|/G for any collection C

of p-subgroups can be easily constructed from FP (G) using Sylow’s theorems.

Abstracting the construction of FP (G) leads to the concept of a fusion system

on P , which consists of the subgroups of P and group monomorphisms between

them, not necessarily induced by a finite group G. A fusion system F on P is

called saturated if it satisfies a certain set of axioms which makes it “look like”

a fusion systems associated to a finite group. A full exposition is given in §3 of

this paper.

A considerable amount of effort was needed by Linckelmann in [7] to use

Symonds’s ideas to prove a variant of Webb’s conjecture for saturated fusion

systems. Proposition 2.13, which is the main observation of this note, allows us

to reprove his theorem in an elegant and conceptual way. Specifically,

1.2. Definition: Fix a fusion system F on P . An F-collection is a union of F -

conjugacy classes of subgroups of P . An F -collection C is closed if a subgroup

Q ≤ P belongs to C whenever it contains an element of C.

Clearly, an F -collection is partially ordered by inclusion and gives rise to an

ordered simplicial complex C. Its k-simplices are the chains P0 < · · · < Pk

of proper inclusions of elements of C. There is an equivalence relation on C

where P0 < · · · < Pk is equivalent to P ′
0
< · · · < P ′

k if there exists a morphism

ϕ : Pk → P ′
k in F such that ϕ(Pi) = P ′

i . This yields a quotient space |C|/F .

We shall prove in §3

1.3. Theorem (Linckelmann [7]): Let F be a saturated fusion system on P

and let C be a non-empty closed F -collection. Then |C|/F is contractible.

We shall also prove

1.4. Theorem: Fix a saturated fusion system F on P and let E denote the F -

collection of the non-trivial elementary abelian p-subgroups of P . Then |E|/F

is contractible.
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2. Sylow p-subgroups and orbit spaces

Throughout this section G is a discrete group, not necessarily finite. We shall

adopt the convention that a space is a simplicial set, see e.g. [1, Chapter VIII]

or [6, Theorems I.11.3 and 11.4]. A G-space is therefore a simplicial G-set.

Recall that ∆[0] and ∆[1] denote the standard simplicial 0-simplex and 1-

simplex. There are standard inclusions of “endpoints” d0, d1 : ∆[0] → ∆[1] (cf.

[1, pp. 234–235]).

2.1. Definition: Consider two G-maps f, g : X → Y . We say that f is homo-

topic to g, written f ∼ g, if there exists a G-map (a homotopy) h : X×∆[1] →

Y such that f = (1X × d1) ◦ h and g = (1X × d0) ◦ h (cf. [1, p. 245]). We say

that f and g are weakly G-homotopic if they become equivalent under the

equivalence relation generated by ∼ on the set of G-maps X → Y (cf. [6, I.6

or II.1.5]). A map f : X → Y is a weak G-homotopy equivalence if there

exists g : Y → X such that both f ◦ g and g ◦ f are weakly G-homotopic to the

respective identities.

Clearly, weakly G-homotopic maps f, g : X → Y induce (weakly) homotopic

maps f : X/G → Y/G on orbit spaces. Consequently, a weak G-homotopy

equivalence f : X → Y induces a weak homotopy equivalence f : X/G→ Y/G.

2.2. Definition: IsoG(X) is the set of isotropy groups of the simplices of a G-

space X .

Clearly, if H belongs to IsoG(X), then so do all its conjugates.

2.3. Definition: A collection in G is a set H which is a union of conjugacy

classes of subgroups of G. A collection H is finite if it consists of finitely

many conjugacy classes. We say that the orbit type of a G-space X is in H if

IsoG(X) ⊆ H. If H is finite, we say that X is of finite orbit type.

2.4. Definition: A subcollection H′ of H is closed if no element of H\H′ contain

an element of H′.

Let G/H denote the set of right cosets of H ≤ G with the obvious G-action

by left translation. Note that for K ≤ G the fixed points set (G/H)K is

(G/H)K = {gH : g−1Kg ≤ H}.

It follows immediately that
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2.5. Proposition: A subcollection H′ of H is closed if and only if (G/H)K is

empty whenever H ∈ H\H′ and K ∈ H′. Equivalently, HomG(G/K,G/H) is

empty.

In light of this observation we see that the face and degeneracy maps in a

G-space X (namely, a simplicial G-set) must carry n-simplices whose isotropy

group is in H′ to k-simplices with the same property. The following definition

now makes sense:

2.6. Definition: Let H′ be a closed subcollection of H and let X be a G-space of

orbit type H. Let XH′ denote the G-subspace of X consisting of the simplices

whose isotropy group belongs to the subcollection H′ of H.

The same observation Proposition 2.5 and the definition of weak G-homotopy

Definition 2.1 makes the following proposition clear. It should be compared with

[13, §I.6].

2.7. Proposition: Let H′ be a closed subcollection of H in G. Then the

assignment X 7→ XH′ defines a functor

{G-spaces of orbit type H} → {G-spaces of orbit type H′}.

It preserves weakly G-homotopic maps and, consequently, weak G-homotopy

equivalences. The inclusion XH′ ⊆ X provides a natural transformation to the

identity functor.

Here is a useful example of closed subcollections.

2.8. Proposition: Let H be a collection in G. Fix a prime p and an integer

n and let H′ denote the subcollection of H consisting of the subgroup H ∈ H

which contain a finite p-subgroup of order > pn. Then H′ is closed in H.

Proof. By definition if H ∈ H\H′ then the order of every finite p-subgroup of

H must be ≤ pn hence it cannot contain a group K ∈ H′.

2.9. Definition: A finite p-subgroup P of G is a Sylow p-subgroup of G if

every finite p-subgroup of G is conjugate to a subgroup of P .

Clearly any two Sylow p-subgroups of G are conjugate. In general, if G

contains a Sylow p-subgroup, this need not be the case for the subgroups of G.
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2.10. Definition: Let P be a collection of finite p-subgroups of G. We say that

a collection H in G has p-type P if every H ∈ H contains a Sylow p-subgroup

which belongs to P . We write this condition Sylp(H) ⊆ P . A G-space X has

p-type P if the collection IsoG(X) has p-type P .

A collection P of finite p-subgroups of G is partially ordered by inclusion and

clearly contains minimal elements provided P is not empty.

2.11. Proposition: Let H be a collection in G of p-type P where P is not

empty. Let Q be a minimal element in P and let P ′ denote the collection

P\{(Q)}, that is P ′ is obtained from P by removing the conjugacy class of Q.

Then

H′ := {H ∈ H : Q is not conjugate to a Sylow p-subgroup of H}.

is a closed subcollection of H of p-type P ′. Moreover, for every R ∈ P ′ and

every H ∈ H\H′ the set (G/H)R is empty.

Proof. Choose K ∈ H′ and let R be a Sylow p-subgroup of K. Note that

R ∈ P ′ because R is not conjugate to Q by definition of H′. This shows that

Sylp(IsoG(H′)) ⊆ P ′.

To show that H′ is closed in H we choose H ∈ H\H′ and prove that (see

Proposition 2.5) (G/H)K is empty. It suffices to show that (G/H)R is empty,

which we proceed to do.

If (G/H)R is not empty then R is conjugate to a subgroup of H which may

be assumed to contain Q as a Sylow p-subgroup. Hence, R is conjugate to a

subgroup of Q and therefore R must be conjugate to Q by the minimality of Q

in P . This is a contradiction since R ∈ P ′.

Recall that XH is naturally an NGH-space for every G-space X and every

H ≤ G. Thus, (G/K)H is, in general, a union (possibly infinite) of NGH-orbits.

The following is a simple, and essentially well-known, observation.

2.12. Lemma: Let H be a subgroup of G and assume that H contains a Sylow

p-subgroup P . Then (G/H)P is isomorphic to the NGP -orbit NGP/NHP .

Proof. If gH ∈ (G/H)P , then P g ≤ H and therefore P g = P h for some h ∈ H .

It follows that g ∈ NGP ·H , consequently (G/H)P ⊆ NGP ·H/H . The opposite

inclusion is obvious.
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Recall that the fibred product X ×G Y of G-spaces X and Y is the orbit

space of X × Y under the diagonal action of G. In particular, when X is a

K-space where K ≤ G there results a G-space G ×K X . There is a natural

isomorphism (G ×K X)/G ∼= X/K. When X is a G-space, there is a natural

map G×NGK (XK) → X . It is an isomorphism for X = G/K.

The main result of this section is Proposition 2.13 below. It allows to deter-

mine when a G-mapX → Y induces a weak homotopy equivalenceX/G→ Y/G

by only checking fixed point subspaces under p-subgroups.

2.13. Proposition: Let f : X → Y be a map of G-spaces of finite p-type P .

Assume that for every Q ∈ P the induced map fQ : XQ → Y Q is a weak

NGQ-homotopy equivalence Definition 2.1. Then f induces a weak homotopy

equivalence X/G→ Y/G.

Proof. We prove the result by induction on |P|. If P is empty then X and Y

are empty and the result is trivial.

Fix a non-empty P and assume by induction that the result holds for all maps

f between G-spaces of p-type P ′ where P ′ is properly contained in P . Consider

f : X → Y between G-spaces of p-type P and let H denote IsoG(X ⊔ Y ). Let

Q be a minimal element in P and consider the collections P ′ = P\{(Q)} and

H′ as in Proposition 2.11. Set X ′ = XH′ and Y ′ = YH′ . Proposition 2.7 shows

that f gives rise to the following morphism of commutative squares.

(1) G×NQ (X ′Q) //
� _

��

X ′
� _

��

f
//

G×NQ (Y ′Q) //
� _

��

Y ′
� _

��

G×NQ (XQ) // X G×NQ (Y Q) // Y.

Observe that IsoG(X ′)∪ IsoG(Y ′) ⊆ H′ whose p-type is P ′. Note that if R ∈ P ′

then X ′R = XR because for every H ∈ IsoG(X)\IsoG(X ′) = H\H′ we have

(G/H)R = ∅, by Proposition 2.11. Similarly Y ′R = Y R and since XR → Y R

is a weak NGR-homotopy equivalence by hypothesis, we see that X ′R → Y ′R

is a weak NGR-homotopy equivalence for all R ∈ P ′. The induction hypothesis

applies to f ′ : X ′ → Y ′ and P ′ and therefore

(2) X ′/G→ Y ′/G is a weak homotopy equivalence.

Consider the NGQ-spaces XQ and Y Q and set

K = IsoNQ(XQ ⊔ Y Q).
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By hypothesis XQ → Y Q is a weak NQ-homotopy equivalence and in particular

(3) XQ/NQ→ Y Q/NQ is a weak homotopy equivalence.

Consider

K′ := {K ∈ K : K contains a finite p-group whose order is > |Q|}.

This is a closed subcollection of K by proposition 2.8. Proposition 2.7 shows

that

(4) (XQ)K′ → (Y Q)K′ is a weak NQ-homotopy equivalence.

We now claim that (XQ)K′ = (X ′)Q. Choose a simplex σ ∈ (X ′)Q and set

H = Gσ. Observe that Q ≤ H and that H ∈ H′. Therefore Q � S, where S ∈

P ′ is a Sylow p-subgroup of H . It follows that Q � NS(Q) ≤ NH(Q), whence

Gσ ∩ NGQ = NH(Q) ∈ K′. We see that σ ∈ (XQ)K′ and we have therefore

proved that (X ′)Q ⊆ (XQ)K′ . Conversely, choose a simplex σ ∈ (XQ)K′ and

set H = NQ. Then Q is a proper subgroup of a finite p-subgroup Q′ of the

isotropy group Hσ = H ∩Gσ. In particular Q ≤ Gσ is not a Sylow p-subgroup

of Gσ, so that σ ∈ (X ′)Q. We deduce that (XQ)K′ ⊆ (X ′)Q and therefore

equality holds.

Similarly (Y Q)K′ = (Y ′)Q and together with (4) we see that (X ′)Q → (Y ′)Q

is a weak NQ-homotopy equivalence, so in particular

(5) (X ′)Q/NQ→ (Y ′)Q/NQ is a weak homotopy equivalence.

By taking G-orbits in (1) we obtain the following morphism of commutative

squares.

(6) X ′Q/NQ //
� _

��

X ′/G
� _

��

f
//

Y ′Q/NQ //
� _

��

Y ′/G
� _

��

XQ/NQ // X/G Y Q/NQ // Y/G.

The vertical arrows are clearly inclusion of spaces because X ′ (resp. Y ′) is a

G-subspace of X (resp. Y ) and similarly (X ′)Q = (XQ)K′ is an NQ-subspace

of XQ (resp. (Y ′)Q is an NQ-subspace of Y Q). Thus, the vertical arrows in (6)

are cofibrations (see, e.g., [1, p. 240], or [6, Theorem I.11.3])

Now, in every simplicial dimension n, a G-orbit in Xn\X ′
n is isomorphic to

G/H where H ∈ H\H′ and, moreover, H may be assumed to contain Q as a
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Sylow p-subgroup. Lemma 2.12 implies that G×NQ (G/H)Q ∼= G/NHQ, hence

(Xn\X
′
n)Q/NQ→ (Xn\X

′
n)/G and (Yn\Y

′
n)Q/NQ→ (Yn\Y

′
n)/G

are bijections. Therefore, (6) is a morphism of pushout squares because this is

the case in every simplicial degree. It follows from Corollary II.8.6 and Lemma

II.8.12 in [6] that X/G → Y/G is a weak homotopy equivalence because the

arrows (2), (5) and (3) are weak homotopy equivalences. Alternatively, one may

argue that (6) is a morphism of homotopy-pushout squares because the vertical

arrows are cofibrations. This completes the induction step.

3. Webb’s conjecture and fusion systems

Let X be a poset with an action of a group G. It gives rise to a small category

where x0 ≤ x1 corresponds to a morphism x0 → x1. One obtains a simplicial

G-set NrX , called the nerve of X , whose set of n-simplices is the set of all the

n composable morphisms x0 → x1 → · · · → xn (see [1, p. 291]). The geo-

metric realisation of NrX is G-equivariantly homeomorphic to the geometric

G-simplicial complex associated to the G-poset X whose set of n-simplices is

indexed by the set {x0 � x1 � · · · � xn}. Since in this note we model topologi-

cal spaces by simplicial sets, we shall write |X | for the nerve of X (rather than

its geometric realisation).

3.1. Definition: Let Sp(G) denote the collection of all the finite p-subgroups of

G and S0

p(G) the collection of the non-trivial finite p-subgroups.

Recall from Definition 2.4 that a closed subcollection C of Sp(G) is a collection

of finite p-groups of G such that if Q ∈ C and Q′ is a finite p-subgroup of G

containing Q then Q′ ∈ C.

3.2. Theorem: Let G be a group which contains a Sylow p-subgroup P and

let C be a non-empty closed subcollection of Sp(G). Assume that for every

P0 ≤ · · · ≤ Pk in C the group
⋂k

i=0
NG(Pi) contains a Sylow p-subgroup. Then

|C|/G is contractible.

Proof. Let X denote |C|. The isotropy group of a k-simplex P0 ≤ · · · ≤ Pk

in |C| is the group H =
⋂k

i=0
NG(Pi) which by hypothesis contains a Sylow

p-subgroup Q. Clearly P0 ⊳ H and therefore P0 ≤ Q which implies, in turn,
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that Q ∈ C because P0 belongs to C which is closed in Sp(G). We deduce that

X has p-type C.

Let Y denote the one-point G-space. Clearly, its p-type is {(P )} which is

contained in C because the latter is not empty and closed in Sp(G).

We shall now consider the canonical map f : X → Y . We have seen that

X and Y have p-type C which must be finite because P is a finite group and

it contains an element from every conjugacy class in Sp(G). In order to apply

Proposition 2.13 it remains to show that XQ is weakly NQ-equivalent to a point

for every Q ∈ C.

Note that CQ consists of P ′ ∈ C such thatQ ≤ NGP
′. The zigzag of inclusions

P ′ ≤ P ′Q ≥ Q, P ′ ∈ CQ

provides a zigzag of natural transformations which connect the identity on CQ

to the constant functor on the object Q. Moreover, by inspection these functors

and natural transformations are NQ-equivariant because NQ fixes Q. Upon

taking nerves, there results a weak NQ-homotopy from the identity of |CQ| to

the constant self map. In other words, |CQ| is weakly NQ-equivalent to a point.

Finally, observe that |CQ| = |C|Q, so we can apply Proposition 2.13 and deduce

that f : X → Y induces a weak homotopy equivalence X/G → Y/G = ∗, that

is |C|/G is contractible.

Fix a finite p-group P . Let Inj(Q,Q′) denote the set of all the injective

homomorphisms Q → Q′ for Q,Q′ ≤ P . Let HomP (Q,Q′) denote those ho-

momorphisms Q → Q′ that are induced by restriction of inner automorphisms

cg ∈ Inn(P ) where cg : x 7→ gxg−1.

A fusion system F on P is a subcategory of the category of groups whose

objects are the subgroups of P and such that for every Q,Q′ ≤ P

(a) HomP (Q,Q′) ⊆ F(Q,Q′) ⊆ Inj(Q,Q′) and

(b) every morphism in F factors as an isomorphism in F followed by an

inclusion of groups.

We have used the notation F(Q,Q′) for the morphism set in F between the

objects Q and Q′.

As an example, let G be a group and P a finite p-subgroup of G. There

results a fusion system F = FP (G) on P whose morphism sets F(Q,Q′) are the

restrictions of the inner automorphisms cg of G, where g ∈ G, to the subgroups

Q and Q′ whenever cg(Q) ≤ Q′.
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3.3. Definition: A fusion system F on P is realised by a group G if G contains

P as a Sylow p-subgroup (Definition 2.9) and F = FP (G).

We shall now discuss saturated fusion systems. Our treatment follows Broto–

Levi–Oliver in [2].

3.4. Definition: Fix a fusion system F on P . Isomorphic objects Q,Q′ of F are

called F-conjugate. A subgroup Q ≤ P is fully F-centralised if |CP (Q)| ≥

|CP (Q′)| for any Q′ which is F -conjugate to Q. A subgroup Q ≤ P is fully

F-normalised if |NP (Q)| ≥ |NP (Q′)| for any Q′ which is F -conjugate to Q.

Given a morphism ϕ ∈ F(Q,P ) define

Nϕ = {g ∈ NP (Q) : ϕ ◦ cg ◦ ϕ−1 ∈ AutP (ϕ(Q))}.

3.5. Definition (cf. [2]): A fusion system F on P is saturated if

(I) Any fully F -normalised subgroup Q ≤ P is fully F -centralised and

AutP (Q) is a Sylow p-subgroup of AutF(Q).

(II) If ϕ ∈ F(Q,P ) is such that ϕ(Q) is fully F -centralised then there exists

ϕ̄ ∈ F(Nϕ, P ) which extends ϕ.

If P is a Sylow p-subgroup of a finite group G then FP (G) is saturated. This

fails in general if G is not finite. Nevertheless

3.6. Theorem (Robinson [9, Theorem 2]): Every saturated fusion system is

realisable.

3.7. Definition: A group G is called pseudo finite at p if for every chain

Q1 ≤ · · · ≤ Qn of inclusions of finite p-subgroups of G, the subgroup

G ∩
⋂n

i=1
NGQi contains a Sylow p-subgroup.

Notice that the definition includes the statement that G contains a Sylow

p-subgroup by considering the case n = 0.

Recall from [2, §6] that a fully F -normalised subgroup P ′ in a saturated

fusion system F , is associated with a normaliser fusion system NF (P ′) on NPP
′

whose morphism sets consists of those morphisms ϕ ∈ F(Q,Q′) which extend

to a morphism ϕ̄ : P ′Q→ P ′Q′ in F which satisfies ϕ̄(P ′) = P ′. It is shown in

[2] that NF(P ′) is saturated if F is saturated.
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3.8. Proposition: Assume that G realises a saturated fusion system F on

P . Then for every fully F -normalised subgroup Q ≤ P the normaliser fusion

system NF(Q) on NPQ is realised by NGQ.

Proof. First we show that NPQ is a Sylow p-subgroup of NGQ. Fix a finite

p-subgroup R ≤ NGQ. Since Q is fully F -normalised, the image of NPQ in

NGQ/CGQ is a Sylow p-subgroup. Therefore, up to conjugation in NGQ we

may assume that

(7) R · CGQ ≤ NPQ · CGQ.

Consider the finite p-group QR. Since P is a Sylow p-subgroup in G there exists

some g ∈ G such that

cg(QR) = g(QR)g−1 ≤ P.

In particular Q, cg(Q) ≤ P so

ϕ := cg−1 ∈ Hom(cg(Q), Q)

is a morphism in F = FP (G). Note that R normalisesQ so cg(R) ≤ NP (cg(Q)).

Furthermore, for any gxg−1 ∈ cg(R) where x ∈ R we have

ϕ ◦ cgxg−1 ◦ ϕ−1 = cg−1 ◦ cgxg−1 ◦ cg = cx ∈ AutF(Q).

Now (7) shows that x ≡ y mod CQ for some y ∈ NPQ and therefore

ϕ ◦ cgxg−1 ◦ ϕ−1 ∈ AutP (Q),

in other words cg(R) ≤ Nϕ. Since Q is fully F -normalised, it is fully F -

centralised and therefore ϕ extends to a morphism ϕ̃ : cg(RQ) → P in F .

Since G realises F there exists some h ∈ G such that ϕ̃ = ch. Observe that

chg(Q) = ch(cg(Q)) = ϕ̃(cg(Q)) = Q, that is hg ∈ NGQ. Furthermore chg(R) =

ϕ̃(cg(R)) ≤ NPQ because cg(R) normalises cg(Q). We have proved, thus, that

R is conjugate in NGQ to a subgroup of NPQ. This shows that NPQ is a Sylow

p-subgroup of NGQ.

It remains to prove thatNGQ realisesNF(Q). First, NF(Q) and FNP Q(NGQ)

are fusion systems on the same group NPQ. Every morphism cg : R → R′ in

FNP Q(NGQ) is a morphism in F which clearly extends to cg : QR → QR′.

This shows that FNP Q(NGQ) ⊆ NF(Q). Conversely, a morphism ϕ : R → R′

in NF(Q) extends, by definition, to a morphism ψ : QR→ QR′ in F such that

ψ(Q) = Q. Since G realises F there exists g ∈ G such that ψ = cg. In particular
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cg(Q) = Q, namely g ∈ NGQ, and by definition cg|R = ψ|R = ϕ. This shows

that NF(Q) ⊆ FNP Q(NGQ).

3.9. Proposition: A group which realises a saturated fusion system is pseudo

finite at p (Definition 3.7).

Proof. Let F be a saturated fusion system on P which is realised by G and

consider a chain Q1 ≤ · · · ≤ Qn of subgroups of P . We have to show that

G ∩ (∩iNQi) contains a Sylow p-subgroup.

We prove this by induction on n. The base of induction, n = 0, is contained

in the definition of realisation of a fusion system. Assume by induction that

the result holds for all groups G which realise saturated fusion systems and all

chains Q1 ≤ · · · ≤ Qn−1 of length n− 1 ≥ 0 in these groups.

Possibly conjugating the chain Q1 ≤ · · · ≤ Qn by an element of G, we may

assume that Qn is a fully F -normalised subgroup of P which is a Sylow p-

subgroup of G. It is shown in [2, Proposition A.6] that NF(Qn) is a saturated

fusion system on NPQ and Proposition 3.8 shows that NGQn realises it. We

can apply the induction hypothesis to the chain Q1 ≤ · · · ≤ Qn−1 in NQn to

deduce that
n⋂

i=1

NGQi =

n−1⋂

i=1

NNQn
(Qi)

contains a Sylow p-subgroup.

An F -collection (Definition 1.2) is clearly a poset by inclusion of groups. Two

k-simplices P0 ≤ · · · ≤ Pk and P ′
0
≤ · · · ≤ P ′

k in the nerve of C are F-conjugate

if there exists ϕ ∈ F(Pk, P
′
k) such that ϕ(Pi) = P ′

i for all i = 0, . . . , k. It is

easy to verify that this is an equivalence relation which respects the face and

degeneracy maps in |C|. We shall be interested in the quotient space |C|/F .

Suppose that F is realised by a group G, that is F = FP (G) where P is

a Sylow p-subgroup of G. An F -collection C gives rise to a collection Ĉ in G

which consists of the conjugacy classes of the groups in C. There is an obvious

inclusion of spaces |C| ⊆ |Ĉ|. Observe that any two F -conjugate simplices in

C are G-conjugate because F = FP (G). There results a well-defined map of

spaces

|C|/F → |Ĉ|/G.

3.10. Proposition: Let G realise a fusion system F on P and let C be an

F -collection. Then |C|/F → |Ĉ|/G is an isomorphism (of simplicial sets).
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Proof. Note that P is a Sylow p-subgroup of G so every P0 ≤ · · · ≤ Pk in

|Ĉ| is G-conjugate to some P ′
0
≤ · · · ≤ P ′

k where P ′
k ≤ P . Also every Pi is

G-conjugate to some P ′′
i ∈ C. It follows that P ′′

i and P ′
i are FP (G) conjugate

so P ′
0
≤ · · · ≤ P ′

k is a simplex in |C|. This shows that |C|/F → |Ĉ|/G is

surjective. Any two simplices P0 ≤ · · · ≤ Pk and P ′
0
≤ · · · ≤ P ′

k in C which are

G-conjugate, are by definition FP (G)-conjugate. This shows that the map is

also injective.

Proof of Theorem 1.3. Theorem 3.6 shows that F is realised by some G. Also G

is pseudo finite at p by Proposition 3.9. Let Ĉ be the collection in G consisting

of the conjugacy classes of the elements of C. Proposition 3.10 shows that

|C|/F ∼= |Ĉ|/G. Observe that Ĉ is a closed subcollection of Sp(G) because if

Q ∈ Ĉ is contained in a p-subgroup R ≤ G, then Rg ≤ P for some g ∈ G. But

Q is G-conjugate to some Q′ ∈ C and therefore Q′ is FP (G)-conjugate to Qg,

namely Qg ∈ C. It follows that Rg ∈ C because C is closed, hence R ∈ Ĉ.

Also note that Ĉ is a finite collection because P is a finite group which con-

tains a representative from every conjugacy class of Sp(G). We can thus apply

Theorem 3.2 to deduce that |Ĉ|/G is contractible.

Proof of Theorem 1.4. Let Ω1(Γ) denote the subgroup generated by the ele-

ments of order p in a group Γ. Notice that every H ∈ IsoG(|Ê |) contains a

Sylow p-subgroup Q by proposition 3.9. Moreover, Q is not trivial because

E0 ≤ H =
⋂

i NG(Ei) for some chain E0 ≤ · · · ≤ Ek in E .

To apply proposition 2.13 to |Ê | → ∗ it suffices to show that EQ is weakly

NQ-equivalent to a point for every non-trivial finite p-subgroup Q of G. Indeed

there are finitely many conjugacy classes of such Q’s because G has a Sylow

p-subgroup P . The zigzag of inclusions

E ≥ CE(Ω1Z(Q)) ≤ CE(Ω1Z(Q)) · Ω1Z(Q) ≥ Ω1Z(Q), E ∈ ÊQ

provides a zigzag of natural transformations from the identity on ÊQ to a con-

stant endofunctor. Moreover, by inspection this zigzag is NQ-equivariant. This

shows that |Ê |Q = |ÊQ| is weakly NQ-equivalent to a point. This argument is

due to Dwyer (in [5, §8]) who attributes it to Quillen.

Alternatively, the result follows by using Theorem 1.3 and the results of [12]

which can be used to prove that the inclusion Ê ⊆ S0

p(G) induces a weak G-

homotopy equivalence on the associated simplicial complexes.
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